

	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963
Form:		05/12/2022
	Number and Date of Revision or Modification	
Course Syllabus	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	06

1.	Course Title	Applied Mathematics (I)			
2.	Course Number	0301701			
3.	Credit Hours (Theory, Practical)	3			
5.	Contact Hours (Theory, Practical)	3			
4.	Prerequisites/ Corequisites	None			
5.	Program Title	Masters in Mathematics			
6.	Program Code				
7.	School/ Center	Science			
8.	Department	Mathematics			
9.	Course Level	Mandatory specialization requirement			
10.	Year of Study and Semester (s)	First year, all semesters			
11.	Other Department(s) Involved in	None			
	Teaching the Course				
12.	Main Learning Language				
13.	Learning Types	■Face to face learning □Blended □Fully online			
14.	Online Platforms(s)	Moodle Microsoft Teams			
15.	Issuing Date	20/11/2024			
16.	Revision Date	20/11/2024			

17. Course Coordinator:

Name: Mohammed Al-Horani	Contact hours: Sun, Tue, (10-11)
	Mon, Wed (11:30-12:30)
Office number: 206	Phone number: 22094
Email: horani@ju.edu.jo	

18. Other Instructors:

ame:	
fice number:	
none number:	
nail:	
ontact hours:	
ame:	
fice number:	
none number:	
nail:	
ontact hours:	

19. Course Description:

Review of ODEs, existence and uniqueness of solutions for ODEs, Integral Transforms, Green's Function, Approximation Methods, non-linear ODEs and their stability

20. Program Student Outcomes (SO's):

(To be used in designing the matrix linking the intended learning outcomes of the course with the intended

learning outcomes of the program)

- **SO-2**) Analyze and apply different mathematical algorithms and theories and use modern techniques in both teaching and research
- **SO-4**) Formulate mathematical and statistical problems by modeling real-life problems, and solve them theoretically and/or numerically using technological tools.
- **SO-6)** Apply knowledge and mathematical tools and think creatively to solve real life problems and then verify and interpret the results correctly.
- SO-7) Work effectively within work teams and communicate scientific knowledge and results with peers and experts in the field.

21. Course Intended Learning Outcomes (CLO's):

(Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

- 1- To solve linear and nonlinear ordinary differential equations (ODEs
- 2- To study the existence and uniqueness of solutions to the initial value problem
- 3- To discuss the stability for some linear and nonlinear systems
- 4- To apply perturbation methods on some ODEs

Course		The learning levels to be achieved									
CLOs	Remembering	Analysing	evaluating	Creating							
1	v	v	٧								
2		V	٧	v							
3	v	v	v	٧	V						
4		٧			٧						

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes

of the program:

Program SO's	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)	SO (6)	SO (7)	SO (8)
Course CLO's								
To solve linear and nonlinear								
ordinary differential		•						
equations (ODEs								
To study the existence and								
uniqueness of solutions to		•						
the initial value problem								
To discuss the stability for								
some linear and nonlinear		•		•		•		
systems								
To apply perturbation		•					•	
methods on some ODEs								

الجامعة الاردنية

23. Topic Outline and Schedule:

-					[
Week	Lecture	Topic	CLO/s Linked to the Topic	Learning Types (Face to Face(FF)/ Blended(BL)/ Fully Online(FO))	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Resources
	1.1	Review of ODEs	2	FF	Teams	S	Exams	Text Book
1	1.2	Method of successive approximations	2	FF	Teams	S	Exams	Text Book
	2.1	Lipschitz condition	2	FF	Teams	S	Exams	Text Book
2	2.2	Convergence of the successive approximations	2	FF	Teams	S	Exams	Text Book
3	3.1	Reduction of order	2	FF	Teams	S	Exams	Text Book
5	3.2	Differential operators	2	FF	Teams	S	Exams	Text Book
4	4.1	Factorization of operators	2	FF	Teams	S	Exams	Text Book
4	4.2	Factorization of operators	2	FF	Teams	S	Exams	Text Book
5	5.1	The regular perturbation method	2,7	FF	Teams	S	Exams	Text Book
	5.2	The Poincaré-Lindstedt Method	2,7	FF	Teams	S	Exams	Text Book
	6.1	Asymptotic Analysis	2,7	FF	Teams	S	Exams	Text Book
6	6.2	Singular Perturbation: Algebraic Equations	2,7	FF	Teams	S	Exams	Text Book
7	7.1	Singular Perturbation: Differential Equations	2,7	FF	Teams	S	Exams	Text Book
	7.2	Singular Perturbation: Differential Equations	2,7	FF	Teams	S	Exams	Text Book
0	8.1	Boundary value problems	2	FF	Teams	S	Exams	Text Book
8	8.2	Integral Equations	2	FF	Teams	S	Exams	Text Book
9	9.1	Green's Functions	2	FF	Teams	S	Exams	Text Book
3	9.2	Green's Functions	2	FF	Teams	S	Exams	Text Book
	10.1	Homogeneous linear system- Distinct Eigen Values	2	FF	Teams	S	Exams	Text Book
10	10.2	Homogeneous linear system- Equal Eigen Values	2	FF	Teams	S	Exams	Text Book
11	11.1	Homogeneous linear system- Complex Eigen Values	2	FF	Teams	S	Exams	Text Book

الجامعة الاردنية

	11.2	Nonhomogenous Linear system (Variation of Parameters)	2	FF	Teams	S	Exams	Text Book
12	12.1	Stability of linear system- Introduction	2	FF	Teams	S	Exams	Text Book
12	12.2	Stability of equilibrium solutions	2	FF	Teams	S	Exams	Text Book
	13.1	The phase-plane	2	FF	Teams	S	Exams	Text Book
13	13.2	Phase portraits of linear systems	2,4,6	FF	Teams	S	Exams	Text Book
	14.1	Almost linear system	2,4,6	FF	Teams	S	Exams	Text Book
14	14.2	Some problems in population dynamics	2,4,6	FF	Teams	S	Exams	Text Book
	15.1	Liapunov's second method	2	FF	Teams	S	Exams	Text Book
15	15.2	Periodic Solutions	2	FF	Teams	S	Exams	Text Book

24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLO/s Linked to the Evaluation activity	Period (Week)	Platform
Assignments	30	Chap 1-4	2,4,6,7	week 1-14	On campus
Mid Term	30	Chap 1-2	2	9 th week	On campus
Final Exam	40	Chap 1-4	2,4,6	16 th week	On campus

25. Course Requirements:

Each student must have:

- Computer

- Account on Microsoft Teams

26. Course Policies:

Class attendance of students at the beginning of the lecture is recoded. Assignment is given to the students at regular intervals for them to solve and submit. Late or no submission of assignments carries penalties or loss of grade points. Absences recorded in each lecture with making excuses, if any. Exiting during the lecture since Formal justification or excuse forces. Mobile phone use in the classroom is Forbidden.

27. References:

A- Required book (s), assigned reading and audio-visuals:

- 1. Elementary differential equations and boundary value problem, Boyce W.E.-DiPrima R.C.
- 2. Introduction to ordinary differential equations, Rabenstein A.L.
- 3. Applied Mathematics, Logan D.
- 4. Fundamentals of Differential Equations, Nagle R.
- B- Recommended books, materials, and media:
 - (1) Perturbation methods, Nayfeh A.
 - (2) Differential equations with boundary value problems, Zill D., Cullen M.

28. Additional information:

Name of the Instructor or the Course Coordinator:	Signature:	Date:
Prof. Mohammed Al-Horani		20-11-2024
Name of the Head of Quality Assurance Committee/ Department:	Signature:	Date:
Prof. Manal Ghanem		
Name of the Head of Department:	Signature:	Date:
Prof. Baha Alzalg		
Name of the Head of Quality Assurance Committee/ School of Science:	Signature:	Date:
Prof. Emad A. Abuosba		
Name of the Dean or the Director:	Signature:	Date:
Prof. Mahmoud I. Jaghoub		